Communication via Sound with Bird-Like Autonomous Agents

Mir Jeffres
Georgia Institute of Technology
Atlanta, Georgia, USA

ACM Reference Format:

Mir Jeffres and Mason Mann. 2021. Communication via Sound with Bird-
Like Autonomous Agents. In Proceedings of ACM Conference (Conference’17).
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 CONCEPT

The concept of our project was to create a group of autonomous,
self-contained physical objects that could sing to each other and
hear each other singing and respond according to computational al-
gorithms. The idea was that simple behavior could be programmed
into each agent and that together, complex group behavior would
arise. Agents would switch between a state where they are listening,
and another state where they respond. During the listening state
they would determine the loudest note that they heard and use
that as the input to a first order Markov model. With all the agents
separately playing single notes from the same Markov model, the
idea was that the whole group behavior would be similar to that of
a single entity playing a single Markov-model. We considered this
to be a sort of “distributed Markov model” Additionally the average
loudness that each agent is hearing at any given time will have an
effect on the way it plays the notes. When the average loudness is
higher, they will shorten their listening period, playing notes more
often and moving through the markov model more quickly, and
they will also play shorter notes creating a frantic feel. Additionally
there would be a few ways that a user could interact and guide the
behavior. The primary method of interaction is simply picking up
the agents and moving them, if they are further apart from each
other they will not hear each other as loudly, decreasing the av-
erage loudness and when far enough away, making some agents
not interact at all. Another way that the users interact is through
a special agent called the “Leader Bird” This agent plays a special
command pitch when a button on it is pressed. All of the follower
agents have four separate Markov models built on different pitch-
class sets and they all start on the same one. When an agent hears
this command pitch they will move to the next pitch-class set. Since
they might not all hear the command pitch depending on where
they are placed, they will likely begin to drift into groups playing
different pitch-class sets moving from a state of consonance in the
beginning of the piece to a polytonal cloud as time goes on.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mason Mann
Georgia Institute of Technology
Atlanta, Georgia, USA
mmann33@gatech.edu

2 CONTEXT

The work that most directly inspired this project was Felix Hess’s
Electronic Sound Creatures. In his project, one hundred physical au-
tonomous agents were created to perform in smaller groups. These
agents had wheels, motors, microphones and speakers and were
able to listen to each other, respond and perform crude localizations
moving towards and away from each other depending on the notes
heard. They were implemented in a fully analog manner using
band-pass filters and op-amp integrators to detect pitches, which
made them very computationally limited. Our project extends this
concept in a few ways. First, it is implemented with an embedded
microcontroller, allowing more pitches to be detected as well as al-
lowing more complex rules to guide each agent’s response to them.
Additionally, while Hess’s work was fully generative, we wanted
to incorporate a way for audiences to interact with our project.
Rather than giving the agents wheels and allowing them to move
themselves, they are stationary and must be moved by the audience.
Picking them up and moving them varying distances from each
other will allow them to hear each other more or less which factors
into the algorithm guiding their behavior. Another concept that in-
formed this project was IOT implementations of Data-Over-Sound.
The idea that complex data can be sent between agents through the
physical medium of sound rather than more complex protocols such
as bluetooth or network connection is very interesting. The final
concept that inspired this was Craig Reynold’s Boids algorithm,
for modeling bird flocking behavior. It was a landmark work in
complex behaviors arising from autonomous agents with simple
rules guiding behavior so we thought it would be interesting to
explore similar concepts in the sound domain.

3 IMPLEMENTATION

The project was implemented by creating nine autonomous agents
housed in 3.5”x3.5”x5” wooden boxes. Each one contains a PCB
containing a speaker, a microphone, an ATMEGA328 microcon-
troller, a DAC chip, and circuitry for scaling the microphone signal,
driving the speaker, conditioning power and conditioning a few
GPIO pins on the microcontroller to read switch data and drive
LEDs. A schematic of the PCB is included in the .zip along with the
project code. An NJM2073 dual power amplifier chip was used in
a push/pull configuration to allow for maximum power efficiency
in driving the speaker. The DAC chip used was a MCP4901 8-bit
DAC chosen for its price, simplicity and ability to be driven over
12C. ATMEGA328 chips were chosen because of their cost and ease
of programming through the Arduino IDE and their extensive doc-
umentation. In the end they proved to be a poor choice for audio
uses. Large sacrifices had to be made in sampling rate, buffer size
and wavetable size and still almost all of the memory was used. To
code the ATMEGA?328s, code was written in the Arduino IDE and
flashed to the chip through an Arduino Uno, the board that allows

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

for user interfacing with ATMEGA?328 chips. The pitch detection
section of the code used a Goertzel algorithm. This algorithm can
be thought of as a single-bin FFT. We didn’t have the computation
to spare to run an entire FFT and since we were only looking for
a finite number of discrete pitches it made sense to only look for
those pitches. The bin size is a function of both the sample rate
and the buffer size. Since we didn’t have the memory to spare for
a large buffer we kept a short buffer and dropped the sample rate
incredibly low to 2500Hz. This allowed us a resolution of 10Hz per
bin which was small enough that adjacent notes didn’t overlap. We
weren’t playing any frequencies over 1000Hz so the low sample rate
shouldn’t really affect the sound of the system. During the listen
period the microcontroller constantly samples the magnitude of all
the notes it is listening for and keeps track of the maximum over
that period. Then at the end of the period it takes the maximum
value of this maximum array, essentially finding what the loudest
note heard over the entire listening period was and uses that note to
feed the markov model. The average of this maximum array is also
used to scale the length of each listening period as well as the length
of an ASR envelope on each note. Resulting in a higher density of
shorter notes when the agent hears a lot of sound. Within the code,
a Markov chain was implemented to determine the next note from
the previous note the agent “heard” through the microphone. The
Markov implementation uses the basic idea of a Markov chain that
is taught in linear algebra where there is a transition matrix that
has all rows and columns summing to 1 and contains the percent
chance of each transition between notes happening, multiplied by
the current state (in this case, a column matrix which contains one
1 value for the note it heard, and the rest zeros). In this project,
there were five total notes, so the transition matrix was a 5x5 matrix
and the current state matrix was 5x1. To determine the next note
from the outputted 5x1 matrix of probabilities of the next note, an
array was created by multiplying each output chance from the 5x1
matrix by 100 to give integer values that summed to 100 for the
column, and then duplicating each possible note in another array
n times, where n was the row of the matrix * 100. This gave a 100
point array with each possible note, and a random number between
0 and 99 was used to index that array to get the next note out. This
algorithm seems complicated, but was relatively easy to implement
and allows for easier manipulation of the Markov model than using
a Markov library. The only library used in this implementation was
one to perform the matrix multiplication to avoid writing two more
loops.

4 EVALUATION

Musically, this piece is not particularly successful in its current state.
It is an interesting concept and behavior has begun to arise but it
would be hard to describe the sonic result as aesthetically beautiful.
Some combination of low sample rate, small wavetables, imperfect
power amplifier and imperfect speaker mounting distorted what
should have been perfect sine waves into something closer to a dis-
torted sawtooth. The fundamental frequencies are preserved so the
agents are able to communicate with each other but the sonic result
is not as pleasant to listen to. The main things learned from the
difficulties in the project were about developing and iterating when
building physical objects. We often were slowed down by certain

Mir Jeffres and Mason Mann

parts of the project not working when we could have worked on
them more in parallel. We didn’t begin implementing the Markov
behavior until the units worked, which took a while as there was a
lot of soldering, laser cutting and a few iterations of circuit boards.
Looking back, this behavior could have been developed in some-
thing like Max and then just ported over once the physical objects
were functional. Debugging behavior on microcontrollers that have
no serial port and need to be removed from the board to be pro-
grammed proved to be very tedious. While we were very excited
to be outside of the Max environment and creating something real
that didn’t need a laptop to run, the power of Max and similar tools
as a method of rapid prototyping of behavior is something that we
could have benefited from in the early stages of the project. Another
issue that we ran into was the quality of the PCBs used. They were
milled on campus using a desktop CNC machine. This allowed us
to quickly create iterations but the boards didn’t have solder mask,
making them difficult to solder to and causing quite a few shorts.
This increased the amount of time spent debugging hardware by
quite a bit and in the end we only had 4 out of the 9 units totally
working given time constraints. The final issue with the system
was that instead of running on battery power they currently are
running on 9v DC wall wart plugs. In general the interactivity of
the system is not quite where we would like it to be yet. The user
is able to pick up the agents and move them around but not very
far as they are still running on wired power. The thresholds and
scaling based on how loud the notes each unit hears are could use
some fine-tuning as well to help the user really feel that they are
having an effect on the music. The pitch-class set switching from
the leader bird does work however, allowing the user a piece of
very direct control. Overall we view this project not as a complete
piece but as a stepping stone. The Markov model works great and
the units are all able to speak to each other but a lot of kinks in the
system need to be worked out and the user interactivity absolutely
needs to be explored a little more deeply.

5 REFERENCES

[1] Arm Ltd. Why Data-Over-Sound Should Be a Part of Any IoT En-
gineer’s Toolbox. Arm | The Architecture for the Digital World. Re-
trieved December 7, 2021 from https://www.arm.com/resources/white-
paper/data-over-sound

[2] Craig Reynolds. Boids (Flocks, Herds, and Schools: a Dis-
tributed Behavioral Model). Retrieved December 7, 2021 from

https://www.red3d.com/cwr/boids/

[3] 2000. Electronic Sound Creatures. In Prerational Intelligence:
Adaptive Behavior and Intelligent Systems Without Symbols and
Logic. Springer, 452-457. DOL:https://doi.org/10.1007/978-94-010-
0870-942

	1 Concept
	2 Context
	3 Implementation
	4 Evaluation
	5 References

