Guitar Effects Chain Plugin
"Amp Master”

QOO e

Group B - Mir Jeffres, Shan Jiang, Vedant Kalbag, Jocelyn Kavanagh, Thiago Roque

Objectives and Features

e Create a guitar amplifier simulator with multiple amp models
o Include ML based guitar tone emulation models (SmartGuitarAmp)
o Include a convolution-based cabinet simulator with an IR loader

e Create an FX chain for pre- and post-amplifier signal processing

e Have flexibility in multiple effects for use in the processing chain:

o EQ

o Compression
o Reverb

o Noise Gate

o Phaser

e Include user-specified effect presets to match desired tone

Create an amplifier simulator with multiple amp
models

3 Amp simulators -

TanhWaveshaping, Analog, and SmartGuitarAmp

Include ML based guitar tone emulation models

Integration of SmartGuitarAmp models

Create an dynamic FX chain for pre- and
post-amplifier signal processing

Static FX chain with bypassing

Include automatic effect estimation to easily make
new effect presets

Matching user-specified guitar tone words to effect
presets (many-many map)

Include a convolution-based cabinet simulator with
an IR loader

Convolution based cabinet simulator included with
static IR

Guitar Amp Simulator Signal Flow

Guitar raw
signal in

)

Pre-Amp FX :>

Guitar Amp
Model ::>

Cabinet
Simulator

Post-Amp FX

—

.

Training Data

U

SmartGuitarAmp
implementation (C++)

<Json model

PedalNetRT
(Python)

Out

Processed
signal out

Legend Class Structure Diagram

getparam
(BT]
Prepareo
Inherit > reset()
Distortion Type update() =
Pre-LP gain Attack
Pre-HP Processor Base Q Threshold
Post LP Ratio
Post HP A Release
Drive N
Inherit : (" Roomsize)
i Damping
h |
5 Width
~—|CSmartGuitarAmp| ~ —J»-| CTanh CTubeModel |<gf— Cabinet IR
Comp T
—J Attack
Threshold
« > <— o Ratio
Release
=
I
Rate \
Depth
> - fc
feedback

EFFECT PROCESSORS \ Wwetdry)

FX

Word-based preset
generation

et param from APVTS

\— Set paran]frpm APVTS
Set param from APVT.

Audio Processor Graph

A AMPLIFIER
CABINET IR

Nodes

3 POST FX
POST FX

Set param from APVTS

Distortion Algorithms

e Static waveshaper based on Tanh function

e Analog emulation of tube amplifier based on SPICE models and mathematical
model of tone stack

e \WaveNet-based distortion (SmartGuitarAmp)

Analog Emulation - Triode

e Vacuum tube emulation based on the modified Norman L. Koren model

;_[2E7/E if B> 0
P 0 otherwise

Analog Emulation - Tone Stack

e Mathematical model of the traditional TBM tone stack

Rpot=250k
C”5 wiper=0.5
I

220p
= R6 = —
= 100k
- @
_ 1 ~ Rpot=500k
= 100n P
= wiper=0.5
= %7 % wiper=0.5
= If
_ 22n
= Rpot=25k

Analog Emulation - Modular Structure

e Modular structure capable of combining triode segments with gain modules
and filters, capable of constructing full emulation of real pre-amplifiers

c9
preGainIndex, I
firstTubeIndex, f 22n l:hlleg
tonestackIndex, @ u12
driveGainIndex, NH12AX7
secondTubeIndex, __|_
postGainIndex R21 § :;z c11

22p
1Meg

S

Smart Guitar Amp Integration - Concept

Final layer H . H
T Do =4 Processing: SmartGuitarAmp
O O O O O O Hidden layer
Dilation =2
N N 2T —
) Dilation=1
Input
n-7 n-6 n-5 n-4 n-3 n-2 n-1 n > Time

CLEAN CHANNEL LEAD CHANNEL

Training: PedalNetRT % P R

OFF PRESENCE LBASS MIDDIE ~ TREBLE GAIN A BASS MIDDLE TREBE GAN) MASTER 'FAD

Smart Guitar Amp Training Pipeline

PreProcessing & Train > Predict > Test > Export

2

g -~ J -~

2

= Formatting the length and type of Using pytorch and a pair of Using existed model to Creates files y_test.wav, y_pred.wav, and

both input/output wav files. pre-recorded wav file to export predict output. x_test.wav, for the ground truth output,
model with affix "ckpt". predicted output, and input signal
respectively.

] prepare.py train.py model.py predict.py test.py plot.py export.py

E

o

&

=

& Plot the amplitude of .
grountruth and prediction Convert model (.ckpt) to model (.json).
from wav files.
Calculate the error.

K torch.nn.modulelist()

= torch.tanh() torch.permute()

§ pytorch_lightning.trainer() torch.split() torch.from_numpy()

L] torch:sigmoid() torch.tensor.numpy()

a torch.cat() torch.no_grad()

S torch.nn.conv1d()

g torch.nn.module o

& torch.optim() orch.mode()

5, torch.utils.data.dataloader

Time (s)

Smart Guitar Amp Training Results

Predicted vs Actual Signal (error to signal: 0.1413)

Original Input

0.2 1

0.0

Amplitude

-0.2

—— models/pedalnet/x_test.wav

Wav Filgf%ﬁ)parison

1.0

0.5

0.0

Amplitude

—0.5

—— models/pedalnet/y_test.wav
—— models/pedalnet/y_pred.wav

abs(pred_si&irr\?ﬁ-(aszztual_signaI)

Amplitude
o
N

T T T T T

0 5 10 15 20 25
Time (s)

Proposed WaveNet-style neural network model

30

35 40

Smart Guitar Amp - Trained Models

Clean - 76 RC-120 (Default)
Glassy - 67 Blackface Duo
Blues - American Bass
Crunch - British Plexi 50w
High Gain - British Rock 50
Metal - 5153 MK Il

Insane - Fire

Acoustic - Acoustic Sim

Smart Guitar Amp - Processing

CSmartGuitarAmp WaveNet

inputChannels: 1
outputChannels: 1
numChannels: 1

loadConfig filterWidth: 1
activation: linear
dilations: 1
levelAdjust: 1.0

Load Tone

blocksize

convData

skipData
residualData

Prepare P>

inputLayer.process()
Process '\ o convStack.process()
outputlLayer.process|()

Cabinet Simulation

e Convolutional node capable of loading impulse responses of real guitar
speaker cabinets

3 ——]
= —y

\\\\\\\\

§_\

Ul Design

e Effects can have a variable signal chain (drag and drop functionality)

OUR GUITAR AMP
® O o :

OUR GUITAR AMP =
® © 6 0 O .

GAIN TONE LOW N0 L MODELS

GAIN TONE CABINET MODELS

AMP

Word-based preset generation! EQ AMP VERB

<

Input a word to estimate a preset...

NOISE GATE

(" options)

Amp Master

PHASER
Ul Implementation ® ® 0 0 ¢
-30.63 14.45 24.82 198.3 oL 0.2 2 & 2k
Threshold Ratio Attack Release
Rate Depth Center Freq Feedback Blen
= = = B o [o o o
=+ =+ -+ =+ =+ + + = +
coMp — EQ 1 AMP —— PHASER —— REVERB mm— GATE —— COMP — EQ — AMP REVERE
Select A Preset . . Select A Preset
] o
(" options) Amp Master Options _ Amp Master
200 800 4000
Choose Amp Type LowMid Frea Mid Frea HiahMid Frea
20000 o — e 20
i A‘ggressive ())
TanhWaveshaping Airy (
Attack (
1 Bloom (1
GAEREA Low O LoWgo0m ‘ in Hiah O
Bright (
SGAmp Chunky (
Compressed (
Creamy (
= o) = = | = ... C | lo]
+ + + + + Fa (+ +
GATE — COMP — EQ PHASER —— REVERB GATE —— COWiF

OUTIN

Select A Preset

- AMIr rnn>ER = REVERB ou

Close Preset Menu ‘

Tone-Matching Effect Preset

e \Word-based stacking presets

e Words from Seymour Duncan’s “Dictionary of Tone Terms”

e Implemented with XML files holding the parameter values and our own
averaging functions to combine each preset

e EX: “mushy” + “muddy” + “flutey” + “growl” = a new preset that should
combine all aspects of each tone!

e 26 presets setting 41 different parameters in the tree P

Attack
Bloom
Boom
Bright
Chunky
Compressed
GAIN EQV TR R, Z:C“)HI;RESSION REVERB NOISE GATE PHASOR
kfre indl peakq lowct hicut threshold ratio attack release make up gain wet/dry damping room size threshold ratio attack release rate depth center freq feedback wet/dry
(1.000 (0,
(20, 20000, (20, 01,10, 1f, 1000.6), (0, (1.0001F, (0.f, (0.£, 10001, 1,
(20. 20000, 1,0.25), 20000, 1, (-24.24, 0.05, 1), (-40.7,0f), 40f), 25f"ms 1000f). (0f 40.9), (0.f, 1.), (0.1, 1.9), (0.f, 1.9), (-80.f,0.1), 40.1), 1000.1), (0.f, 1000.f), (0.1f, 20.f). (0.f, 1.f), 0.25), (-1.f. 1), (0.1, 1.9),

1,0.25).20 20000) 0.25),750 05,1).0) 1 ? ? 0f"dB" e 25.f"ms" 0.f"dB" 0.25f"%" 0,™) 0.2f™ -80.f"dB" E e 25f"ms" 25f"ms" 0.f"Hz" 0.251™ 25.f"Hz" 0.1"%" 0.25f"%

https://www.seymourduncan.com/blog/latest-updates/dictionary-of-tone-terms

Automated Testing

e JUCE tests were confusing so we used Catch2 for test framework
e Using juce::Value for parameter setting

e Tests include:

o Check for clipping for each parameter

Set and check min and max for all params

Effect bypassing and check overall gain for each node
APVTS node instantiation

Latency

Mono and stereo support

Etc!

o O O O O O

(12553 assertions in 11 test cases)

Roadblocks

Learning to use JUCE ProcessorGraph

ML in C++, too complex to implement for auto-generated presets
Integrating each part of the application together

Lack of documentation of testing in JUCE

Multi-select dropdown for preset selection

Cmake and linker issues with external libraries

Timeline

2/13 - Plug-in framework, distortion and tone, GUI design

2/28 - Amp and FX components with standard GUI; ML decisions
3/7 - Work through class structure, create component base
3/14 - SmartGuitarAmp running individually

3/14 - Initial connection of components with standard GUI

3/14 - Start writing tests

3/21 - Creating database of effect presets

3/28 - Begin implementing new GUI

4/3 - Finish creating effect presets, start refactoring AudioGraph
4/11 - Finish refactoring the Graph and nodes

4/18 - Connecting SmartGuitarAmp and Cab Sim

4/25 - Finish tests and SmartGuitarAmp

5/3 - Finish GUI, connect presets, final bug fixes!

