
Guitar Effects Chain Plugin
“Amp Master”

Group B - Mir Jeffres, Shan Jiang, Vedant Kalbag, Jocelyn Kavanagh, Thiago Roque



● Create a guitar amplifier simulator with multiple amp models
○ Include ML based guitar tone emulation models (SmartGuitarAmp)
○ Include a convolution-based cabinet simulator with an IR loader

● Create an FX chain for pre- and post-amplifier signal processing
● Have flexibility in multiple effects for use in the processing chain:

○ EQ
○ Compression
○ Reverb
○ Noise Gate
○ Phaser

● Include user-specified effect presets to match desired tone

Objectives and Features



Project Goals Project Results

Create an amplifier simulator with multiple amp 
models

3 Amp simulators - 

TanhWaveshaping, Analog, and SmartGuitarAmp

Include ML based guitar tone emulation models Integration of SmartGuitarAmp models

Create an dynamic FX chain for pre- and 
post-amplifier signal processing

Static FX chain with bypassing

Include automatic effect estimation to easily make 
new effect presets

Matching user-specified guitar tone words to effect 
presets (many-many map)

Include a convolution-based cabinet simulator with 
an IR loader

Convolution based cabinet simulator included with 
static IR



Guitar Amp Simulator Signal Flow





● Static waveshaper based on Tanh function
● Analog emulation of tube amplifier based on SPICE models and mathematical 

model of tone stack
● WaveNet-based distortion (SmartGuitarAmp)

Distortion Algorithms



● Vacuum tube emulation based on the modified Norman L. Koren model

Analog Emulation - Triode



Analog Emulation - Tone Stack

● Mathematical model of the traditional TBM tone stack



● Modular structure capable of combining triode segments with gain modules 
and filters, capable of constructing full emulation of real pre-amplifiers 

Analog Emulation - Modular Structure



Training: PedalNetRT

Smart Guitar Amp Integration - Concept

Processing: SmartGuitarAmp



Proposed WaveNet-style neural network model.

Smart Guitar Amp Training Pipeline



Proposed WaveNet-style neural network model

Smart Guitar Amp Training Results



Smart Guitar Amp - Trained Models

Clean - 76 RC-120 (Default)

Glassy - 67 Blackface Duo

Blues - American Bass

Crunch - British Plexi 50w

High Gain - British Rock 50

Metal - 5153 MK II

Insane - Fire

Acoustic - Acoustic Sim



Smart Guitar Amp - Processing



Cabinet Simulation

● Convolutional node capable of loading impulse responses of real guitar 
speaker cabinets



● Effects can have a variable signal chain (drag and drop functionality)

UI Design

Word-based preset generation!



UI Implementation



Tone-Matching Effect Preset

● Word-based stacking presets
● Words from Seymour Duncan’s “Dictionary of Tone Terms”
● Implemented with XML files holding the parameter values and our own 

averaging functions to combine each preset
● Ex: “mushy” + “muddy” + “flutey” + “growl” = a new preset that should 

combine all aspects of each tone!
● 26 presets setting 41 different parameters in the tree

https://www.seymourduncan.com/blog/latest-updates/dictionary-of-tone-terms


Automated Testing

● JUCE tests were confusing so we used Catch2 for test framework
● Using juce::Value for parameter setting
● Tests include:

○ Check for clipping for each parameter
○ Set and check min and max for all params
○ Effect bypassing and check overall gain for each node
○ APVTS node instantiation
○ Latency
○ Mono and stereo support
○ Etc!



Roadblocks

● Learning to use JUCE ProcessorGraph
● ML in C++, too complex to implement for auto-generated presets
● Integrating each part of the application together
● Lack of documentation of testing in JUCE 
● Multi-select dropdown for preset selection 
● Cmake and linker issues with external libraries



Timeline
● 2/13 - Plug-in framework, distortion and tone, GUI design
● 2/28 - Amp and FX components with standard GUI; ML decisions
● 3/7 - Work through class structure, create component base
● 3/14 - SmartGuitarAmp running individually
● 3/14 - Initial connection of components with standard GUI
● 3/14 - Start writing tests
● 3/21 - Creating database of effect presets
● 3/28 - Begin implementing new GUI
● 4/3 - Finish creating effect presets, start refactoring AudioGraph
● 4/11 - Finish refactoring the Graph and nodes
● 4/18 - Connecting SmartGuitarAmp and Cab Sim
● 4/25 - Finish tests and SmartGuitarAmp 
● 5/3 - Finish GUI, connect presets, final bug fixes! 


