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Objectives and Features

e Create a guitar amplifier simulator with multiple amp models
o Include ML based guitar tone emulation models (SmartGuitarAmp)
o Include a convolution-based cabinet simulator with an IR loader

e Create an FX chain for pre- and post-amplifier signal processing

e Have flexibility in multiple effects for use in the processing chain:

o EQ

o Compression
o Reverb

o Noise Gate

o Phaser

e Include user-specified effect presets to match desired tone



Create an amplifier simulator with multiple amp
models

3 Amp simulators -

TanhWaveshaping, Analog, and SmartGuitarAmp

Include ML based guitar tone emulation models

Integration of SmartGuitarAmp models

Create an dynamic FX chain for pre- and
post-amplifier signal processing

Static FX chain with bypassing

Include automatic effect estimation to easily make
new effect presets

Matching user-specified guitar tone words to effect
presets (many-many map)

Include a convolution-based cabinet simulator with
an IR loader

Convolution based cabinet simulator included with
static IR




Guitar Amp Simulator Signal Flow
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Legend Class Structure Diagram
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Distortion Algorithms

e Static waveshaper based on Tanh function

e Analog emulation of tube amplifier based on SPICE models and mathematical
model of tone stack

e \WaveNet-based distortion (SmartGuitarAmp)



Analog Emulation - Triode

e Vacuum tube emulation based on the modified Norman L. Koren model
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Analog Emulation - Tone Stack

e Mathematical model of the traditional TBM tone stack
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Analog Emulation - Modular Structure

e Modular structure capable of combining triode segments with gain modules
and filters, capable of constructing full emulation of real pre-amplifiers
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Smart Guitar Amp Integration - Concept
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Smart Guitar Amp Training Pipeline

PreProcessing & Train > Predict > Test > Export
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Smart Guitar Amp Training Results

Predicted vs Actual Signal (error to signal: 0.1413)

Original Input

0.2 1

0.0

Amplitude

-0.2

—— models/pedalnet/x_test.wav

Wav Filgf%ﬁ)parison

1.0

0.5

0.0

Amplitude

—0.5

—— models/pedalnet/y_test.wav
—— models/pedalnet/y_pred.wav

abs(pred_si&irr\?ﬁ-(aszztual_signaI)

Amplitude
o
N

T T T T T

0 5 10 15 20 25
Time (s)

Proposed WaveNet-style neural network model

30

35 40




Smart Guitar Amp - Trained Models

Clean - 76 RC-120 (Default)
Glassy - 67 Blackface Duo
Blues - American Bass
Crunch - British Plexi 50w
High Gain - British Rock 50
Metal - 5153 MK Il

Insane - Fire

Acoustic - Acoustic Sim




Smart Guitar Amp - Processing

CSmartGuitarAmp WaveNet

inputChannels: 1
outputChannels: 1
numChannels: 1

loadConfig filterWidth: 1
activation: linear
dilations: 1
levelAdjust: 1.0

Load Tone

blocksize

convData

skipData
residualData

Prepare P>

inputLayer.process()
Process '\ o convStack.process()
outputlLayer.process|()




Cabinet Simulation

e Convolutional node capable of loading impulse responses of real guitar
speaker cabinets
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Ul Design

e Effects can have a variable signal chain (drag and drop functionality)
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Tone-Matching Effect Preset

e \Word-based stacking presets

e Words from Seymour Duncan’s “Dictionary of Tone Terms”

e Implemented with XML files holding the parameter values and our own
averaging functions to combine each preset

e EX: “mushy” + “muddy” + “flutey” + “growl” = a new preset that should
combine all aspects of each tone!

e 26 presets setting 41 different parameters in the tree P
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https://www.seymourduncan.com/blog/latest-updates/dictionary-of-tone-terms

Automated Testing

e JUCE tests were confusing so we used Catch2 for test framework
e Using juce::Value for parameter setting

e Tests include:

o  Check for clipping for each parameter

Set and check min and max for all params

Effect bypassing and check overall gain for each node
APVTS node instantiation

Latency

Mono and stereo support

Etc!

o O O O O O

(12553 assertions in 11 test cases)




Roadblocks

Learning to use JUCE ProcessorGraph

ML in C++, too complex to implement for auto-generated presets
Integrating each part of the application together

Lack of documentation of testing in JUCE

Multi-select dropdown for preset selection

Cmake and linker issues with external libraries



Timeline

2/13 - Plug-in framework, distortion and tone, GUI design

2/28 - Amp and FX components with standard GUI; ML decisions
3/7 - Work through class structure, create component base
3/14 - SmartGuitarAmp running individually

3/14 - Initial connection of components with standard GUI

3/14 - Start writing tests

3/21 - Creating database of effect presets

3/28 - Begin implementing new GUI

4/3 - Finish creating effect presets, start refactoring AudioGraph
4/11 - Finish refactoring the Graph and nodes

4/18 - Connecting SmartGuitarAmp and Cab Sim

4/25 - Finish tests and SmartGuitarAmp

5/3 - Finish GUI, connect presets, final bug fixes!



